If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+48x+6=0
a = -16; b = 48; c = +6;
Δ = b2-4ac
Δ = 482-4·(-16)·6
Δ = 2688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2688}=\sqrt{64*42}=\sqrt{64}*\sqrt{42}=8\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{42}}{2*-16}=\frac{-48-8\sqrt{42}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{42}}{2*-16}=\frac{-48+8\sqrt{42}}{-32} $
| |-9b|=72 | | 2(3m–1)=10 | | 8x+1=2x+0 | | 3(3w+9)|4=8 | | -4b-5=3b+9b | | 6x+1+3x=10+9x-8=180 | | 3(10-4(x-2))+2((3x+9)-2)=2(X+1)+36 | | 21.6=1/2*30v | | X-3+2x-7=180 | | 15=3y–6 | | 1/216=6^2x-1 | | 5a-(2a+6)=-3a | | 9x+6=1x+0 | | 4x-21+x-3=180 | | 3t–4=t+10 | | 5(x+1)=4x+0 | | -7x+4+4+2x-3=6-x1-2x | | 9x+3=1x+8 | | 2x+5=5x+5-3x | | 9u=24+3u | | 10(s-4)=111 | | -7x-2=-51 | | -8+12x+7x=12 | | X/10+2x/5=12 | | -4w-32=-107 | | 9x+4=1x+0 | | 9x-90=-243 | | x+66+x+46=180 | | 3(m+1=4m-7 | | 8x=9=7x+1 | | 0=x(0.5+0.6666666666666666x) | | 8(2l+4)=128 |